Shape-from-Operator: Recovering Shapes from Intrinsic Operators
نویسندگان
چکیده
We formulate the problem of shape-from-operator (SfO), recovering an embedding of a mesh from intrinsic operators defined through the discrete metric (edge lengths). Particularly interesting instances of our SfO problem include: shape-from-Laplacian, allowing to transfer style between shapes; shape-from-difference operator, used to synthesize shape analogies; and shape-from-eigenvectors, allowing to generate ‘intrinsic averages’ of shape collections. Numerically, we approach the SfO problem by splitting it into two optimization sub-problems: metric-from-operator (reconstruction of the discrete metric from the intrinsic operator) and embedding-from-metric (finding a shape embedding that would realize a given metric, a setting of the multidimensional scaling problem). We study numerical properties of our problem, exemplify it on several applications, and discuss its imitations.
منابع مشابه
Shape-from-intrinsic operator
Shape-from-X is an important class of problems in the fields of geometry processing, computer graphics, and vision, attempting to recover the structure of a shape from some observations. In this paper, we formulate the problem of shape-from-operator (SfO), recovering an embedding of a mesh from intrinsic differential operators defined on the mesh. Particularly interesting instances of our SfO p...
متن کاملA Dirac Operator for Extrinsic Shape Analysis
The eigenfunctions and eigenvalues of the Laplace-Beltrami operator have proven to be a powerful tool for digital geometry processing, providing a description of geometry that is essentially independent of coordinates or the choice of discretization. However, since Laplace-Beltrami is purely intrinsic it struggles to capture important phenomena such as extrinsic bending, sharp edges, and fine s...
متن کاملAdjoint Map Representation for Shape Analysis and Matching
In this paper, we propose to consider the adjoint operators of functional maps, and demonstrate their utility in several tasks in geometry processing. Unlike a functional map, which represents a correspondence simply using the pull-back of function values, the adjoint operator reflects both the map and its distortion with respect to given inner products. We argue that this property of adjoint o...
متن کاملAffine-permutation Symmetry: Invariance and Shape Space
Studying similarity of objects by looking at their shapes arises naturally in many applications. However, under different viewpoints one and the same object appears to have different shapes. In addition, the correspondence between their feature points are unknown to the viewer. In this paper, we introduce the concept of intrinsic shape of an object that is invariant to affine-permutation shape ...
متن کاملSkeleton-Intrinsic Symmetrization of Shapes
Enhancing the self-symmetry of a shape is of fundamental aesthetic virtue. In this paper, we are interested in recovering the aesthetics of intrinsic reflection symmetries, where an asymmetric shape is symmetrized while keeping its general pose and perceived dynamics. The key challenge to intrinsic symmetrization is that the input shape has only approximate reflection symmetries, possibly far f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 34 شماره
صفحات -
تاریخ انتشار 2015